Name	Course/Section
Date	Professor/TA

Activity 10.1 Modeling Photosynthesis: How can cells use the sun's energy to convert carbon dioxide and water into glucose?

Activity 10.1 is designed to help you understand:

- 1. The roles photosystems I and II and the Calvin cycle play in photosynthesis
- 2. How and why C₄ and CAM photosynthesis differ from C₃ photosynthesis

Using your textbook, lecture notes, and the materials available in class (or those you devise at home), model photosynthesis as it occurs in a plant cell.

Your model should be a dynamic (working or active) representation of the events that occur in the various phases of C₃ photosynthesis.

Building the Model

- Use chalk on a tabletop or a marker on a large sheet of paper to draw the cell membrane and the chloroplast membranes.
- Use playdough or cutout pieces of paper to represent the molecules, ions, and membrane transporters or pumps.
- Use the pieces you assembled to model the processes involved in C₃ photosynthesis. Develop a dynamic (claymation-type) model that allows you to manipulate or move carbon dioxide and water and its breakdown products through the various steps of the process.
- When you feel you have developed a good working model, demonstrate and explain it to another student or to your instructor.

Your model of C₃ photosynthesis should include what occurs in photosystems I and II and in the Calvin cycle. For **photosystems I and II**, be sure your model includes and explains the roles of the following:

$NADP^{+}$	ATP	chemiosmosis
NADPH	water and oxygen	ATP synthase
ADP	H^+	
\mathbf{P}_{i}	e^-	

Also indicate where in the plant cell each item is required or produced.

For the Calvin cycle, be sure your model includes and explains the roles of the following:		
glucose	NADPH	
C ₃ or 3C sugars	ATP	
carbon dioxide		
Also indicate where in the plant cell ea	ach item is required or produced.	
After you've modeled C ₃ photosynthes and CAM photosynthesis.	sis, indicate how the system would be altered for C ₄	
• Indicate where in the cells of the leaf PEP carboxylase exists and how it reacts to capture CO ₂ . Be sure to indicate the fate of the captured CO ₂ .		
• Do the same for PEP carboxylase in CAM plants.		
Use your model and the information the questions.	in Chapter 10 of Biology, 7th edition, to answer	
1. The various reactions in photo within the chloroplast. Draw a simplification parts: outer membrane, grana, thylakoi	osynthesis are spatially segregated from each other ied diagram of a chloroplast and include these id, lumen, stroma/matrix.	

r	
a. Where in the chloroplast do the light reactions occur?	
b. Where in the chloroplast is the chemiosmotic gradient developed?	
c. Where in the chloroplast does the Calvin cycle occur?	

2. In photosynthesis, the reduction of carbon dioxide to form glucose is carried out in a controlled series of reactions. In general, each step or reaction in the sequence requires the input of energy. The sun is the ultimate source of this energy.

a. What is/are the overall function(s) of photosystem I?	b. What is/are the overall function(s) of photosystem II?	c. What is/are the overall function(s) of the Calvin cycle?

3. Are the compounds			
listed here <i>used</i> or			
	70		
produced in:	Photosystem I?	Photosystem II?	The Calvin cycle?
Glucose			
			>
			G.
O_2			
CO ₂			
H ₂ O			
ATP			
$ADP + (P)_i$			
		•	
NADPH			
NADPH			
NADP ⁺			

4. Which light reaction system (cyclic or noncyclic) would a chloroplast use in each situation?

a. Plenty of light is available, but the cell contains little NADP ⁺ .	b. There is plenty of light, and the cell contains a high concentration of NADP ⁺ .

5. All living organisms require a constant supply of ATP to maintain life. If no light is available, how can a plant make ATP?